Add like
Add dislike
Add to saved papers

CTAB-Assisted Synthesis of FeNi Alloy Nanoparticles: Effective and Stable Electrocatalysts for Urea Oxidation Reactions.

Development of highly efficient electrocatalysts for treating urea-rich wastewater is an important problem in environmental management and energy production. In this work, an iron-nickel alloy (Fe-Ni alloy) was synthesized via soft-template cetyltrimethylammonium bromide (CTAB)-assisted precipitation using low-temperature calcination. The as-synthesized nanoalloy was characterized by X-ray diffraction (XRD), which revealed the formation of a face-centered cubic (FCC) structure of the Fe-Ni alloy; field emission-scanning electron microscopic (FE-SEM) analysis revealed the spherical shape of the Fe-Ni alloy; high-resolution transmission electron microscopy (HR-TEM) revealed the average size to be ∼33.09 nm; and X-ray photoelectron spectroscopy (XPS) showed the presence of Fe, Ni, C, and O components and their chemical composition and valence states in the Fe-Ni alloy. The electrochemical urea oxidation reaction (UOR) was investigated by conducting linear sweep voltammetry (LSV) tests on the synthesized electrocatalysts with different Ni/Fe ratios in alkaline electrolytes with urea. The potential required to reach a current density of 10 mA cm-2 is 1.27 V vs RHE, which demonstrates the higher electrochemical activity of the Fe-Ni alloy compared to other individual compounds. This could be due to CTAB which improved the structural stability and synergetic and electronic effects in the nanoscale. This study will further contribute to renewable energy generation technology with long-term energy sustainability and also opens up great potential for reducing water pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app