Add like
Add dislike
Add to saved papers

Effect of Functional Inhibition of BACE1 on Sensitization to γ-Irradiation in Cancer Cells.

Developing strategies for the radiosensitization of cancer cells by the inhibition of genes, which harbor low toxicity to normal cells, will be useful for improving cancer radiotherapy. Here, we focused on a β-site of amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1; β-secretase, memapsin-2). By functional inhibition of this peptidase by siRNA, it has also recently been shown that the DNA strand break marker, γH2AX foci, increased, suggesting its involvement in DNA damage response. To investigate this possibility, we knocked down BACE1 with siRNA in cancer cell lines, and sensitization to γ-irradiation was examined by a colony formation assay, γH2AX foci and level analysis, and flow cytometry. BACE1 knockdown resulted in the sensitization of HeLa, MDA-MB-231, U2OS, and SAOS cells to γ-irradiation in a diverse range. BACE1 knockdown showed a weak radiosensitization effect in osteosarcoma U2OS cells, which has a normal p53 function. HeLa and SAOS cells, which harbor p53 dysfunction, exhibited a greater level of radiosensitization. These results suggest that BACE1 may be a potential target for the radiosensitization in particular cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app