Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High-throughput drug screen identifies calcium and calmodulin inhibitors that reduce JCPyV infection.

Antiviral Research 2024 Februrary
JC polyomavirus (JCPyV) is a nonenveloped, double-stranded DNA virus that infects the majority of the population. Immunocompetent individuals harbor infection in their kidneys, while severe immunosuppression can result in JCPyV spread to the brain, causing the neurodegenerative disease progressive multifocal leukoencephalopathy (PML). Due to a lack of approved therapies to treat JCPyV and PML, the disease results in rapid deterioration, and is often fatal. In order to identify potential antiviral treatments for JCPyV, a high-throughput, large-scale drug screen was performed using the National Institutes of Health Clinical Collection (NCC). Drugs from the NCC were tested for inhibitory effects on JCPyV infection, and drugs from various classes that reduced JCPyV infection were identified, including receptor agonists and antagonists, calcium signaling modulators, and enzyme inhibitors. Given the role of calcium signaling in viral infection including Merkel cell polyomavirus and simian virus 40 polyomavirus (SV40), calcium signaling inhibitors were further explored for the capacity to impact JCPyV infection. Calcium and calmodulin inhibitors trifluoperazine (TFP), W-7, tetrandrine, and nifedipine reduced JCPyV infection, and TFP specifically reduced viral internalization. Additionally, TFP and W-7 reduced infection by BK polyomavirus, SV40, and SARS-CoV-2. These results highlight specific inhibitors, some FDA-approved, for the possible treatment and prevention of JCPyV and several other viruses, and further illuminate the calcium and calmodulin pathway as a potential target for antiviral drug development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app