Add like
Add dislike
Add to saved papers

Multimodal classification of Alzheimer's disease and mild cognitive impairment using custom MKSCDDL kernel over CNN with transparent decision-making for explainable diagnosis.

Scientific Reports 2024 January 21
The study presents an innovative diagnostic framework that synergises Convolutional Neural Networks (CNNs) with a Multi-feature Kernel Supervised within-class-similar Discriminative Dictionary Learning (MKSCDDL). This integrative methodology is designed to facilitate the precise classification of individuals into categories of Alzheimer's Disease, Mild Cognitive Impairment (MCI), and Cognitively Normal (CN) statuses while also discerning the nuanced phases within the MCI spectrum. Our approach is distinguished by its robustness and interpretability, offering clinicians an exceptionally transparent tool for diagnosis and therapeutic strategy formulation. We use scandent decision trees to deal with the unpredictability and complexity of neuroimaging data. Considering that different people's brain scans are different, this enables the model to make more detailed individualised assessments and explains how the algorithm illuminates the specific neuroanatomical regions that are indicative of cognitive impairment. This explanation is beneficial for clinicians because it gives them concrete ideas for early intervention and targeted care. The empirical review of our model shows that it makes diagnoses with a level of accuracy that is unmatched, with a classification efficacy of 98.27%. This shows that the model is good at finding important parts of the brain that may be damaged by cognitive diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app