Add like
Add dislike
Add to saved papers

Dynamic real-time forecasting technique for reclaimed water volumes in urban river environmental management.

Environmental Research 2024 January 19
In recent years, the utilization of wastewater recycling as an alternative water source has gained significant traction in addressing urban water shortages. Accurate prediction of wastewater quantity is paramount for effective urban river water resource management. There is an urgent need to develop advanced forecasting technologies to further enhance the accuracy and efficiency of water quantity predictions. Decomposition ensemble models have shown excellent predictive capabilities but are challenged by boundary effects when decomposing the original data sequence. To address this, a rolling forecast decomposition ensemble scheme was developed. It involves using a machine learning (ML) model for prediction and progressively integrating prediction outcomes into the original sequence using complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Long short-term memory (LSTM) is then applied for sub-signal prediction and ensemble. The ML-CEEMDAN-LSTM model was introduced for wastewater quantity prediction, compared with non-decomposed ML models, CEEMDAN-based LSTM models, and ML-CEEMDAN-based LSTM models. Three ML algorithms-linear regression (LR), gradient boosting regression (GBR), and LSTM-were examined, using real-time prediction data and historical monitoring data, with historical data selected using the decision tree method. The study used daily water volumes data from two reclaimed water plants, CH and WQ, in Beijing. The results indicate that (1) ML models varied in their selection of real-time factors, with LR performing best among ML models during testing; (2) the ML-CEEMDAN-LSTM model consistently outperformed ML models; (3) the ML-CEEMDAN-LSTM hybrid model performed better than the CEEMDAN-LSTM model across different seasons. This study offers a reliable and accurate approach for reclaimed water volumes forecasting, critical for effective water environment management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app