Add like
Add dislike
Add to saved papers

Cyclooxygenase-2 inhibition affects the ratio of GluN2A/GluN2B receptor subunits through interaction with mGluR5 in the mouse brain.

Neuropeptides 2024 April
N-methyl-D-aspartic acid receptors (NMDARs) are the most studied receptors in mammalian brains. Their role in depression, cognition, schizophrenia, learning and memorization, Alzheimer's disease, and more is well documented. In the search for new drug candidates in depression, intensive studies have been conducted. Compounds that act by influencing NMDARs have been particularly intensively investigated following the success of ketamine in clinics. Unfortunately, the side effects associated with ketamine do not allow it to be useful in all cases. Therefore, it is important to learn about new unknown mechanisms related to NMDAR activation and study the impact of changes in the excitatory synapse environment on this receptor. Both direct and intermediary influence on NMDARs via mGluRs and COX-2 are effective. Our prior studies showed that both mGluRs ligands and COX-2 inhibitors are potent in depression-like and cognitive studies through mutual interactions. The side effects associated with imipramine administration, e.g., memory impairment, were improved when inhibiting COX-2. Therefore, this study is a trial that involves searching for modifications in NMDARs in mouse brains after prolonged treatment with MTEP (mGluR5 antagonist), NS398 (COX-2 inhibitor), or imipramine (tricyclic antidepressant). The prefrontal cortex (PFC) and hippocampus (HC) were selected for PCR and Western blot analyses. Altered expression of Gin2a or Grin2b genes after treatment was found. The observed effects were more potent when COX-2 was inhibited. The finding described here may be vital when searching for new drugs acting via NMDARs without the side effects related to cognition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app