Add like
Add dislike
Add to saved papers

Virtual twins for model-informed precision dosing of clozapine in patients with treatment-resistant schizophrenia.

Model-informed precision dosing using virtual twins (MIPD-VTs) is an emerging strategy to predict target drug concentrations in clinical practice. Using a high virtualization MIPD-VT approach (Simcyp version 21), we predicted the steady-state clozapine concentration and clozapine dosage range to achieve a target concentration of 350 to 600 ng/mL in hospitalized patients with treatment-resistant schizophrenia (N = 11). We confirmed that high virtualization MIPD-VT can reasonably predict clozapine concentrations in individual patients with a coefficient of determination (R2 ) ranging between 0.29 and 0.60. Importantly, our approach predicted the final dosage range to achieve the desired target clozapine concentrations in 73% of patients. In two thirds of patients treated with fluvoxamine augmentation, steady-state clozapine concentrations were overpredicted two to four-fold. This work supports the application of a high virtualization MIPD-VT approach to inform the titration of clozapine doses in clinical practice. However, refinement is required to improve the prediction of pharmacokinetic drug-drug interactions, particularly with fluvoxamine augmentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app