Add like
Add dislike
Add to saved papers

Computational Flow Cytometry Accurately Identifies Sezary Cells Based on Simplified Aberrancy and Clonality Features.

Flow cytometric identification of circulating neoplastic cells (Sezary cells) in patients with mycosis fungoides (MF) and Sezary syndrome (SS) is essential for diagnosis, staging and prognosis. While recent advances have improved the performance of this laboratory assay, the complex immunophenotype of Sezary cells and overlap with reactive T cells demand a high level of analytic expertise. We utilized machine learning to simplify this analysis using only 2 pre-defined Sezary cell-gating plots. We studied 114 samples from 59 patients with SS/MF, and 66 samples from unique patients with inflammatory dermatoses. A single dimensionality reduction plot highlighted all T-cell receptor constant β chain-restricted (clonal) CD3+ /CD4+ T-cells detected by expert analysis. On receiver operator curve analysis, an aberrancy scale feature computed by comparison with controls (area under the curve = 0.98) outperformed loss of CD2 (0.76), CD3 (0.83), CD7 (0.77) and CD26 (0.82) in discriminating Sezary cells from reactive CD4+ T cells. Our results closely mirrored those obtained by exhaustive expert analysis for event classification (positive percent agreement = 100%, negative percent agreement = 99%) and Sezary cell quantitation (regression slope = 1.003, R squared = 0.9996). We demonstrate the potential of machine learning to simplify the accurate identification of Sezary cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app