Add like
Add dislike
Add to saved papers

Multi-omics comprehensive analyses of programmed cell death patterns to regulate the immune characteristics of head and neck squamous cell carcinoma.

Translational Oncology 2024 January 18
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous cancer with high morbidity and mortality. Triggering the programmed cell death (PCD) to enhance the anti-tumor therapies is being applied in multiple cancers. However, the limited understanding of genetic heterogeneity in HNSCC severely hampers the clinical efficacy. We systematically analyzed 14 types of PCD in HNSCC from The Cancer Genome Atlas (TCGA). We utilized ssGSEA to calculate the PCD scores and classify patients into two clusters. Subsequently, we displayed the genomic alteration landscape to unravel the significant differences in copy number alterations and gene mutations. Furthermore, we calculated the IC50 values of targeted drugs to predict the differences in sensitivity. To identify the immune-related prognostic types, we comprehensively estimated the relationship between immune indicators and all prognostic PCD in three datasets (TCGA, GSE65858, GSE41613). Finally, 7 regulators were filtered. Subsequently, we integrated 10 machine learning algorithms and 101 algorithm combinations to test the clinical predictive efficacy. Using WGCNA as a basis, we built a weighted co-expression network to identify modules involved in the immune landscape with different colors. Meanwhile, our results indicated that blue and red modules containing crucial regulators closely related to the CD4+, CD8+ T cells, TMB or PD-L1. FCGR2A from blue module, CSF2, INHBA, and THBS1 from the red module were determined. After verifying in vivo experiments, FCGR2A was identified as hub gene. In conclusion, our findings suggest a potential role of PCD in HNSCC, offering new insights into effective immunotherapy and anti-tumor therapies in HNSCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app