Journal Article
Review
Add like
Add dislike
Add to saved papers

OX40 in the Pathogenesis of Atopic Dermatitis-A New Therapeutic Target.

Atopic dermatitis (AD) is a chronic, heterogeneous, inflammatory disease characterized by skin lesions, pruritus, and pain. Patients with moderate-to-severe AD experience chronic symptoms, intensified by unpredictable flares, and often have comorbidities and secondary complications, which can result in significant clinical burden that impacts the patient's overall quality of life. The complex interplay of immune dysregulation and skin barrier disruption drives AD pathogenesis, of which T-cell-dependent inflammation plays a critical role in patients with AD. Despite new targeted therapies, many patients with moderate-to-severe AD fail to achieve or sustain their individual treatment goals and/or may not be suitable for or tolerate these therapies. There remains a need for a novel, efficacious, well-tolerated therapeutic option that can deliver durable benefits across a heterogeneous AD patient population. Expression of OX40 [tumor necrosis factor receptor superfamily, member 4 (TNFRSF4)], a prominent T-cell co-stimulatory molecule, and its ligand [OX40L; tumor necrosis factor superfamily, member 4 (TNFSF4)] is increased in AD. As the OX40 pathway is critical for expansion, differentiation, and survival of effector and memory T cells, its targeting might be a promising therapeutic approach to provide sustained inhibition of pathogenic T cells and associated inflammation and broad disease control. Antibodies against OX40 [rocatinlimab (AMG 451/KHK4083) and telazorlimab (GBR 830)] or OX40L [amlitelimab (KY1005)] have shown promising results in early-phase clinical studies of moderate-to-severe AD, highlighting the importance of OX40 signaling as a new therapeutic target in AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app