Add like
Add dislike
Add to saved papers

Detection of methandienone and its metabolites in equine urine, plasma and hair following a multidose oral administration.

Methandienone is an anabolic-androgenic steroid that is prohibited in equine sports due to its potential performance enhancing properties. Metabolism and detection of methandienone in equine urine have been investigated comprehensively in literature; however, there is a limited knowledge about its metabolites in equine plasma and no information about its detection in equine hair. Following a multi-dose oral administration of methandienone to two Thoroughbred horses, 17-epimethandienone, methyltestosterone, two mono-hydroxylated, two di-hydroxylated and three 17α-methylandrostanetriol metabolites were detected in plasma. The majority of these were present as free analytes, whilst the mono-hydroxylated metabolites and one isomer of 17α-methylandrostanetriol were partially conjugated. Estimated peak concentrations of methandienone were 6,000 and 11,100 pg/ml; meanwhile, they were 25.4 and 40.5 pg/ml for methyltestosterone. The most abundant analyte in the post-administration plasma samples of both horses was the mono-hydroxylated metabolite; however, the parent compound provided the longest detection (up to 96 h). Screening analysis of hair enabled the detection of methandienone in mane hair samples only, for up to 3 months. Its mono- and di-hydroxylated metabolites were detected with greater peak responses for up to 6 months post-administration in both mane and tail samples, showing that these metabolites could be better analytical targets for hair analysis when administered orally. A follow-up methodology with an extensive wash procedure confirmed the presence of methandienone and its metabolites in a number of post-administration hair samples. Final wash samples were also analysed to assess the degree of internal incorporation (via bloodstream) against possible external deposition (via sweat/sebum).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app