Add like
Add dislike
Add to saved papers

Comparison of the diagnostic effectiveness of ultrasound imaging coupled with three mathematical models for discriminating thyroid nodules.

Acta Radiologica 2024 January 18
BACKGROUND: The overlapping nature of thyroid lesions visualized on ultrasound (US) images could result in misdiagnosis and missed diagnoses in clinical practice.

PURPOSE: To compare the diagnostic effectiveness of US coupled with three mathematical models, namely logistic regression (Logistics), partial least-squares discriminant analysis (PLS-DA), and support vector machine (SVM), in discriminating between malignant and benign thyroid nodules.

MATERIAL AND METHODS: A total of 588 thyroid nodules (287 benign and 301 malignant) were collected, among which 80% were utilized for constructing the mathematical models and the remaining 20% were used for internal validation. In addition, an external validation cohort comprising 160 nodules (80 benign and 80 malignant) was employed to validate the accuracy of these mathematical models.

RESULTS: Our study demonstrated that all three models exhibited effective predictive capabilities for distinguishing between benign and malignant nodules, whose diagnostic effectiveness surpassed that of the TI-RADS classification, particularly in terms of true negative diagnoses. SVM achieved a higher diagnostic rate for malignant thyroid nodules (93.8%) compared to Logistics (91.5%) and PLS-DA (91.6%). PLS-DA exhibited higher diagnostic rates for benign thyroid nodules (91.9%) compared to Logistics (86.7%) and SVM (88.7%). Both the area under the receiver operating characteristic curve (AUC) values of PLS-DA (0.917) and SVM (0.913) were higher than that of Logistics (0.891).

CONCLUSION: Our findings indicate that SVM had significantly higher rates of true positive diagnoses and PLS-DA exhibited significantly higher rates of true negative diagnoses. All three models outperformed the TI-RADS classification in discriminating between malignant and benign thyroid nodules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app