Add like
Add dislike
Add to saved papers

Ad libitum ice slurry ingestion and half-marathon performance in a hot environment: A study comparing the effects of the amount and moment of ingestion between ice slurry and water at 37 °C.

Ice slurry ingestion during prolonged exercises may improve performance in hot environments; however, the ideal amount and timing of ingestion are still uncertain. We determined whether ad libitum ice slurry ingestion influences physiological and perceptual variables and half-marathon performance while comparing the effects of the amount and moment of ingestion between ice slurry and water at 37 °C. Ten trained participants (28 ± 2 years; mean and SD) were required to run two half marathons while consuming either ice slurry (-1 °C; Ad-1) or water (37 °C; 37 CE) ad libitum. They then performed two other half marathons where, during one, they were required to ingest an amount of water equivalent to the amount consumed during the Ad-1 trial (Pro37), and in the other, to ingest ice slurry in the amount consumed during the 37 CE trial (Pro-1). During the half marathons, dry-bulb temperature and relative humidity were controlled at 33.1 ± 0.3 °C and 60 ± 3%, respectively. Ad-1 ingestion (349.6 ± 58.5 g) was 45% less than 37 CE ingestion (635.5 ± 135.8 g). Physical performance, heart rate, perceived exertion, body temperatures, and thermal perception were not influenced by the temperature or amount of beverage ingestion. However, a secondary analysis suggested that lower beverage ingestion was associated with improved performance (Ad-1 + Pro37 vs. 37 CE + Pro-1: -4.0 min, Cohen's d = 0.39), with a significant relationship between lower beverage ingestion and faster running time (b = 0.02, t = 4.01, p < 0.001). In conclusion, ice slurry ingestion does not affect performance or physiological or perceptual variables during a half marathon in a hot environment. Preliminary evidence suggests that lower beverage ingestion (ice slurry or warm water) is associated with improved performance compared to higher ingestion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app