Add like
Add dislike
Add to saved papers

Loss of testosterone induces postprandial insulin resistance and increases the expression of the hepatic antioxidant flavin-containing monooxygenases in mice exposed to intermittent hypoxia.

Acta Physiologica 2024 January 18
AIM: We tested the hypothesis that low testosterone alters the effects of intermittent hypoxia (IH) on glucose homeostasis, hepatic oxidative stress, and transcriptomic profile in male mice.

METHODS: We used sham-operated or orchiectomized (ORX) mice exposed to normoxia (Nx) or IH for 2 weeks. We performed fasting insulin and glucose tolerance tests and assessed fasting and postprandial insulin resistance with the HOMA-IR. The activity of hepatic prooxidant (NADPH oxidase-NOX), antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase-SOD, Cat, GPx), lipid peroxidation (MDA concentration), and the total concentration of glutathione (GSH) were measured under postprandial conditions. mRNA sequencing and pathway enrichment analyses were used to identify hepatic genes underlying the interactions between IH and testosterone.

RESULTS: In Sham mice, IH improves fasting insulin sensitivity and glucose tolerance, while there are no effects of IH in ORX mice. In ORX mice, IH induces postprandial hyperinsulinemia, insulin resistance, and a prooxidant profile of enzyme activity (low SOD activity) without altering hepatic MDA and GSH content. ORX and IH altered the expression of genes involved in oxidoreductase activities, cytochromes-dependent pathways, and glutathione metabolism. Among the genes upregulated in ORX-IH mice, the flavin-containing monooxygenases (FMO) are particularly relevant since these are potent hepatic antioxidants that could help prevent overt oxidative stress in ORX-IH mice.

CONCLUSION: Low levels of testosterone in male mice exposed to IH induce post-prandial hyperinsulinemia and insulin resistance and determine the mechanisms by which the liver handles IH-induced oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app