Add like
Add dislike
Add to saved papers

Benzoquinone-Lubricated Intercalation in Manganese Oxide for High-Capacity and High-Rate Aqueous Aluminum-Ion Battery.

Small 2024 January 18
Aqueous aluminum-ion batteries are attractive post-lithium battery technologies for large-scale energy storage in virtue of abundant and low-cost Al metal anode offering ultrahigh capacity via a three-electron redox reaction. However, state-of-the-art cathode materials are of low practical capacity, poor rate capability, and inadequate cycle life, substantially impeding their practical use. Here layered manganese oxide that is pre-intercalated with benzoquinone-coordinated aluminum ions (BQ-Alx MnO2 ) as a high-performance cathode material of rechargeable aqueous aluminum-ion batteries is reported. The coordination of benzoquinone with aluminum ions not only extends interlayer spacing of layered MnO2 framework but reduces the effective charge of trivalent aluminum ions to diminish their electrostatic interactions, substantially boosting intercalation/deintercalation kinetics of guest aluminum ions and improving structural reversibility and stability. When coupled with Zn50 Al50 alloy anode in 2 m Al(OTf)3 aqueous electrolyte, the BQ-Alx MnO2 exhibits superior rate capability and cycling stability. At 1 A g-1 , the specific capacity of BQ-Alx MnO2 reaches ≈300 mAh g-1 and retains ≈90% of the initial value for more than 800 cycles, along with the Coulombic efficiency of as high as ≈99%, outperforming the Alx MnO2 without BQ co-incorporation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app