Add like
Add dislike
Add to saved papers

Endosomal recycling inhibitors downregulate estrogen receptor-alpha and synergise with endocrine therapies.

PURPOSE: Breast cancer (BC) accounts for roughly 30% of new cancers diagnosed in women each year; thus, this cancer type represents a substantial burden for people and health care systems. Despite the existence of effective therapies to treat BC, drug resistance remains a problem and is a major cause of treatment failure. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. Recent research indicates that inhibition of the endosomal recycling pathway, an intracellular membrane trafficking pathway that returns endocytosed proteins back to the plasma membrane, may be a promising strategy to downregulate clinically relevant cell surface proteins such as HER2 and HER3, and to overcome drug resistance.

METHODS: To investigate the molecular mechanism of action of an endosomal recycling inhibitor (ERI) called primaquine, we performed a reverse-phase protein array (RPPA) assay using a HER2-positive breast cancer cell line. The RPPA findings were confirmed by Western blot and RT-qPCR in several BC cell lines. Novel drug combinations were tested by MTT cell viability and clonogenic assays.

RESULTS: Among the signalling molecules downregulated by ERIs were estrogen receptor-alpha (ER-α) and androgen receptor. We confirmed this finding in other breast cancer cell lines and show that downregulation occurs at the transcriptional level. We also found that ERIs synergise with tamoxifen, a standard-of-care therapy for breast cancer.

DISCUSSION: Our data suggest that combining ERIs with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app