Add like
Add dislike
Add to saved papers

Cartilage destruction in early rheumatoid arthritis patients correlates with CD21 -/low double-negative B cells.

BACKGROUND: Involvement of B cells in the pathogenesis of rheumatoid arthritis (RA) is supported by the presence of disease-specific autoantibodies and the efficacy of treatment directed against B cells. B cells that express low levels of or lack the B cell receptor (BCR) co-receptor CD21, CD21-/low B cells, have been linked to autoimmune diseases, including RA. In this study, we characterized the CD21+ and CD21-/low B cell subsets in newly diagnosed, early RA (eRA) patients and investigated whether any of the B cell subsets were associated with autoantibody status, disease activity and/or joint destruction.

METHODS: Seventy-six eRA patients and 28 age- and sex-matched healthy donors were recruited. Multiple clinical parameters were assessed, including disease activity and radiographic joint destruction. B cell subsets were analysed in peripheral blood (PB) and synovial fluid (SF) using flow cytometry.

RESULTS: Compared to healthy donors, the eRA patients displayed an elevated frequency of naïve CD21+ B cells in PB. Amongst memory B cells, eRA patients had lower frequencies of the CD21+ CD27+ subsets and CD21-/low CD27+ IgD+ subset. The only B cell subset found to associate with clinical factors was the CD21-/low double-negative (DN, CD27- IgD- ) cell population, linked with the joint space narrowing score, i.e. cartilage destruction. Moreover, in SF from patients with established RA, the CD21-/low DN B cells were expanded and these cells expressed receptor activator of the nuclear factor κB ligand (RANKL).

CONCLUSIONS: Cartilage destruction in eRA patients was associated with an expanded proportion of CD21-/low DN B cells in PB. The subset was also expanded in SF from established RA patients and expressed RANKL. Taken together, our results suggest a role for CD21-/low DN in RA pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app