Add like
Add dislike
Add to saved papers

The sound of Parkinson's disease: A model of audible bradykinesia.

INTRODUCTION: Evaluation of bradykinesia is based on five motor tasks from the MDS-UPDRS. Visually scoring these motor tasks is subjective, resulting in significant interrater variability. Recent observations suggest that it may be easier to hear the characteristic features of bradykinesia, such as the decrement in sound intensity or force of repetitive movements. The objective is to evaluate whether audio signals derived during four MDS-UPDRS tasks can be used to detect and grade bradykinesia, using two machine learning models.

METHODS: 54 patients with Parkinson's disease and 28 healthy controls were filmed while executing the bradykinesia motor tasks. Several features were extracted from the audio signal, including number of taps, speed, sound intensity, decrement and freezes. For each motor task, two supervised machine learning models were trained, Logistic Regression (LR) and Support Vector Machine (SVM).

RESULTS: Both classifiers were able to separate patients from controls reasonably well for the leg agility task, area under the receiver operating characteristic curve (AUC): 0.92 (95%CI: 0.78-0.99) for LR and 0.93 (0.81-1.00) for SVM. Also, models were able to differentiate less severe bradykinesia from severe bradykinesia, particularly for the pronation-supination motor task, with AUC: 0.90 (0.62-1.00) for LR and 0.82 (0.45-0.97) for SVM.

CONCLUSION: This audio-based approach discriminates PD from healthy controls with moderate-high accuracy and separated individuals with less severe bradykinesia from those with severe bradykinesia. Sound analysis may contribute to the identification and monitoring of bradykinesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app