Add like
Add dislike
Add to saved papers

Affinity-assisted covalent self-assembly of PduQ-SpyTag and Nox-SpyCatcher to construct multi-enzyme complexes on the surface of magnetic microsphere modified with chelated Ni 2 .

It is of great significance to study the effect of multi-enzyme aggregation behavior at the interface on the formation of multi-enzyme complexes and their co-catalytic characteristics, which is helpful for us to design and construct immobilized multi-enzyme complex systems for in vitro synthetic biology. Here, a magnetic microsphere with chelated Ni2+ , was prepared to explore the self-assembly characteristics of PduQ-SpyTag (P-T) and Nox-SpyCatcher (NC) on its surface, based on the mixed interaction mode consisting the affinity of His-tag/Ni2+ and covalent binding of SpyTag/SpyCatcher. After studying the effect of saturated or unsaturated adsorption of P-T on the covalent binding between P-T and NC at the interface, a possible multienzyme interaction mechanism for the affinity-assisted covalent self-assembly on the Ni2+ chelating surface was proposed. The time evolution of NADH showed that the immobilized P-T/N-C complex formed by this method and the free P-T/N-C complex exhibited similar synergistic catalytic properties, and presented higher catalytic efficiency than the simple mixing of P-T and NC. The optimal catalytic conditions, stability and reusability of the immobilized multi-enzyme complexes prepared in this study were also discussed by comparing them with free enzymes. In this study, we demonstrate a simple and effective strategy for self-assembling SpyTag/SpyCatcher fusion proteins on the surface of magnetic beads, which is inspiring for the construction of more cascade enzyme systems at the interface. It provides a new method for facilitating the rapid construction of immobilized multi-enzyme complexes in vitro from the crude cell lysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app