Add like
Add dislike
Add to saved papers

Activation of GPER-1 Attenuates Traumatic Brain Injury-Induced Neurological Impairments in Mice.

Molecular Neurobiology 2024 January 14
This study aimed to investigate the effects of G1-activated G protein-coupled estrogen receptor 1 (GPER1) on neurological impairments and neuroinflammation in traumatic brain injury (TBI) mice. The controlled cortical impingement (CCI) method was used to establish the TBI model. The mice were subjected to ovariectomy (OVX) for two weeks prior to modeling. GPER1 agonist G1 was administered by intracerebroventricular injection. Brain tissue water content was detected by wet/dry method, and blood-brain barrier damage was detected by Evans blue extravasation. The neurological impairments in mice were evaluated by open field test, Y-maze test, nest-building test, object location memory test and novel object recognition test. Ionized calcium-binding adapter molecule 1 (Iba1) staining was used to indicate the activation of microglia. Expression of M1/M2-type microglia markers and inflammatory factors were evaluated by ELISA and qRT-PCR. The G1 administration significantly reduced cerebral edema and Evans blue extravasation at injury ipsilateral cortex and basal ganglia in TBI mice. Activation of GPER1 by G1 improved the anxiety behavior and the cognitive dysfunction of mice induced by TBI. G1 administration significantly decreased Iba1-positive staining cells and the mRNA levels of CD86, macrophage cationic peptide 1 (Mcp-1), nitric oxide synthase 2 (Nos2), interleukin 1 beta (IL-1β), and macrophage inflammatory protein-2 (MIP-2), while increased the mRNA levels of interleukin 10 (IL-10), arginase1 (Arg-1) and CD206. Activation of GPER1 through G1 administration has the potential to ameliorate cognitive dysfunction induced by TBI in mice. It may also inhibit the activation of M1 microglia in cortical tissue resulting from TBI, while promoting the activation of M2 microglia and contributing to the regulation of inflammatory responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app