Add like
Add dislike
Add to saved papers

Biomechanical analysis of posteromedial tibial plateau fracture fixation in fresh cadaveric bone.

Injury 2024 January 9
This study aims to compare the mechanical strength of three different posterior-based internal fixation methods for posteromedial tibial plateau fractures. The study utilized 12 tibial plateaus harvested from fresh-frozen cadavers, and the posteromedial fracture fragments were created. The bones were then randomly assigned to one of three fixation methods: two posteroanterior lag screws (LS) size 4.0 mm, posterior buttress plate using a 3.5 mm small dynamic compression plate (DCP), or posterior buttress plate using a 3.5 mm T-shaped plate (TP). Biomechanical testing was performed by applying vertical compression force to the center of the posteromedial fracture fragment until the load to failure (displacement ≥ 3 mm) was reached, and displacement of the fragment was measured using a motion sensor. The data exhibited normal distribution, and one-way analysis of variance (ANOVA) was used to determine the load to failure, followed by Fisher post hoc Least-Significant Difference (LSD) to correct for multiple comparisons. The statistical analysis demonstrated significantly higher mean load to failure values in the T-shaped plate group compared to both the small dynamic compression plate group and the lag screw group (p < 0.05). However, after conducting further post hoc analysis, the observed significant differences were solely between the LS and TP groups (p = 0.021). These findings suggest that the T-shaped plate represents the most effective method for internally fixing posteromedial tibial plateau fractures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app