Add like
Add dislike
Add to saved papers

In vivo assembly enhanced binding effect augments tumor specific ferroptosis therapy.

Nature Communications 2024 January 12
Emerging evidence indicates that the activation of ferroptosis by glutathione peroxidase 4 (GPX4) inhibitors may be a prominent therapeutic strategy for tumor suppression. However, the wide application of GPX4 inhibitors in tumor therapy is hampered due to poor tumor delivery efficacy and the nonspecific activation of ferroptosis. Taking advantage of in vivo self-assembly, we develop a peptide-ferriporphyrin conjugate with tumor microenvironment specific activation to improve tumor penetration, endocytosis and GPX4 inhibition, ultimately enhancing its anticancer activity via ferroptosis. Briefly, a GPX4 inhibitory peptide is conjugated with an assembled peptide linker decorated with a pH-sensitive moiety and ferriporphyrin to produce the peptide-ferriporphyrin conjugate (Gi-F-CAA). Under the acidic microenvironment of the tumor, the Gi-F-CAA self-assembles into large nanoparticles (Gi-F) due to enhanced hydrophobic interaction after hydrolysis of CAA, improving tumor endocytosis efficiency. Importantly, Gi-F exhibits substantial inhibition of GPX4 activity by assembly enhanced binding (AEB) effect, augmenting the oxidative stress of ferriporphyrin-based Fenton reaction, ultimately enabling antitumor properties in multiple tumor models. Our findings suggest that this peptide-ferriporphyrin conjugate design with AEB effect can improve the therapeutic effect via induction of ferroptosis, providing an alternative strategy for overcoming chemoresistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app