Add like
Add dislike
Add to saved papers

Comparative Analysis of Differential Cellular Transcriptome and Proteome Regulation by HIV-1 and HIV-2 Pseudovirions in the Early Phase of Infection.

In spite of the similar structural and genomic organization of human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2), striking differences exist between them in terms of replication dynamics and clinical manifestation of infection. Although the pathomechanism of HIV-1 infection is well characterized, relatively few data are available regarding HIV-2 viral replication and its interaction with host-cell proteins during the early phase of infection. We utilized proteo-transcriptomic analyses to determine differential genome expression and proteomic changes induced by transduction with HIV-1/2 pseudovirions during 8, 12 and 26 h time-points in HEK-293T cells. We show that alteration in the cellular milieu was indeed different between the two pseudovirions. The significantly higher number of genes altered by HIV-2 in the first two time-points suggests a more diverse yet subtle effect on the host cell, preparing the infected cell for integration and latency. On the other hand, GO analysis showed that, while HIV-1 induced cellular oxidative stress and had a greater effect on cellular metabolism, HIV-2 mostly affected genes involved in cell adhesion, extracellular matrix organization or cellular differentiation. Proteomics analysis revealed that HIV-2 significantly downregulated the expression of proteins involved in mRNA processing and translation. Meanwhile, HIV-1 influenced the cellular level of translation initiation factors and chaperones. Our study provides insight into the understudied replication cycle of HIV-2 and enriches our knowledge about the use of HIV-based lentiviral vectors in general.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app