Add like
Add dislike
Add to saved papers

Inhibitory Effects of Sesquiterpenoids Isolated from Artemisia scoparia on Adipogenic Differentiation of 3T3-L1 Preadipocytes.

Obesity and related complications are significant health issues in modern society, largely attributed to a sedentary lifestyle and a carbohydrate-rich diet. Since anti-obesity drugs often come with severe side effects, preventative measures are being sought globally, including dietary changes and functional foods that can counteract weight gain. In this context, plant-based metabolites are extensively studied for their advantageous biological effects against obesity. Several plants within the Artemisia genus have been reported to possess anti-adipogenic properties, preventing adipocytes from maturing and accumulating lipids. The present study investigated the anti-adipogenic potential of two sesquiterpenoids, reynosin and santamarine, isolated from A. scoparia in adipose-induced 3T3-L1 preadipocytes. Differentiating 3T3-L1 adipocytes treated with these isolated compounds displayed fewer adipogenic characteristics compared to untreated mature adipocytes. The results indicated that cells treated with reynosin and santamarine accumulated 55.0% and 52.5% fewer intracellular lipids compared to untreated control adipocytes, respectively. Additionally, the mRNA expression of the key adipogenic marker, transcription factor PPARγ, was suppressed by 87.2% and 91.7% following 60 μM reynosin and santamarine treatment, respectively, in differentiated adipocytes. Protein expression was also suppressed in a similar manner, at 92.7% and 82.5% by 60 μM reynosin and santamarine treatment, respectively. Likewise, SERBP1c and C/EBPα were also downregulated at both gene and protein levels in adipocytes treated with samples during differentiation. Further analysis suggested that the anti-adipogenic effect of the compounds might be a result of AMPK activation and the subsequent suppression of MAPK phosphorylation. Overall, the present study suggested that sesquiterpenoids, reynosin, and santamarine were two potential bioactive compounds with anti-adipogenic properties. Further research is needed to explore other bioactive agents within A. scoparia and elucidate the in vivo action mechanisms of reynosin and santamarine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app