Add like
Add dislike
Add to saved papers

Hovenia dulcis Suppresses the Growth of Huh7-Derived Liver Cancer Stem Cells by Inducing Necroptosis and Apoptosis and Blocking c-MET Signaling.

Cells 2023 December 22
Liver cancer stem cells (LCSCs) contribute to the initiation, metastasis, treatment resistance, and recurrence of hepatocellular carcinoma (HCC). Therefore, exploring potential anticancer agents targeting LCSCs may offer new therapeutic options to overcome HCC treatment failure. Hovenia dulcis Thunberg (HDT), a tree from the buckthorn family found in Asia, exhibits various biological activities, including antifatigue, antidiabetic, neuroprotective, hepatoprotective, and antitumor activities. However, the therapeutic effect of HDT in eliminating LCSCs remains to be confirmed. In this study, we evaluated the inhibitory activity of ethanol, chloroform, and ethyl acetate extracts from HDT branches on the growth of Huh7-derived LCSCs. The ethyl acetate extract of HDT (EAHDT) exhibited the most potent inhibitory activity against the growth of Huh7 LCSCs among the three HDT extracts. EAHDT suppressed the in vitro self-renewal ability of Huh7 LCSCs and reduced tumor growth in vivo using the Huh7 LCSC-transplanted chick embryo chorioallantoic membrane model. Furthermore, EAHDT not only arrested the cell cycle in the G0/G1 phase but also induced receptor-interacting protein kinase 3/mixed-lineage kinase domain-like protein-mediated necroptosis and caspase-dependent apoptosis in Huh7 LCSCs in a concentration-dependent manner. Furthermore, the growth inhibitory effect of EAHDT on Huh7 LCSCs was associated with the downregulation of c-MET-mediated downstream signaling pathways and key cancer stemness markers. Based on these findings, we propose that EAHDT can be used as a new natural drug candidate to prevent and treat HCC by eradicating LCSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app