Add like
Add dislike
Add to saved papers

Important Constituents of Heavy Water-containing Solution for Cold Storage and Subsequent Reperfusion on an Isolated Perfused Rat Liver.

The University of Wisconsin (UW) solution is the most effective preservation solution currently used; however, to safely use expanded-criteria donor grafts, a new cold storage solution that alleviates graft injury more effectively is required. We prepared a heavy water (D2 O)-containing buffer, Dsol, and observed strong protective effects during extended cold storage of rat hearts and livers. In the current study, we modified Dsol (mDsol) and tested its efficacy. The aim of the present study was to determine whether mDsol could protect the rat liver more effectively than the UW solution and to clarify the roles of D2 O and deferoxamine (DFX). Rat livers were subjected to cold storage for 48 hours in test solutions: UW, mDsol, mDsol without D2 O or DFX (mDsol-D2 O[-], mDsol-DFX[-]), and subsequently reperfused on an isolated perfused rat liver for 90 minutes at 37°C. In the UW group, the liver was dehydrated during cold storage and rapidly expanded during reperfusion. Accordingly, the cumulative weight change was the highest in the UW group, together with augmented portal veinous resistance and ALT leakage and decreased oxygen consumption rate and bile production. These changes were significantly suppressed in the mDsol-treated group. In the mDsol-D2 O(-) and mDsol-DFX(-) groups offered partial protection. In conclusion, mDsol appeared to be superior to the UW solution for simple cold storage of the rat liver, presumably due to improved microcirculation in the early phase of reperfusion. Both heavy water and deferoxamine are essential for alleviating seamless organ swelling that occurs during cold storage and subsequent reperfusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app