Add like
Add dislike
Add to saved papers

Effects of Acute Sleep Deprivation on the Sequential Rate of Torque Development throughout the Force-Time Curve.

Sleep Science 2023 December
Objective  The impact of sleep deprivation on the physiological determinants of explosive torque production remains poorly understood. We aimed at determining the acute effects of 24 hours of sleep deprivation on the sequential rate of torque development (RTD) obtained during plantar flexion through maximum voluntary isometric contraction (MVIC). Materials and Methods  The study included 14 healthy-young adults (8 men and 6 women). The participants visited the laboratory on 2 different occasions: without and with 24 hours of sleep deprivation. In each session, the subjects were tested for RTD of the plantar flexors with concomitant recordings of the electromyographic (EMG) amplitude of the soleus over the following time intervals: 0 to 30, 30 to 50, 50 to 100, and 100 to 150 ms. Results  Sleep deprivation did not affect peak RTD (without sleep deprivation: 283.3 ± 111.6 N.m.s -1 versus with sleep deprivation: 294.9 ± 99.2 N.m.s -1 ; p  > 0.05) of plantar flexion. The sequential values of RTD, as well as the normalized amplitude of the soleus EMG, remained similar between both conditions (p > 0.05). Discussion  In conclusion, we found that 24 hours of sleep deprivation do not affect muscle activation, nor explosive torque production throughout the torque-time curve. Thus, exercise performance and daily functionality in tasks involving rapid torque development might remain well preserved after 24 hours of acute sleep deprivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app