Add like
Add dislike
Add to saved papers

Role of Interleukin-21 in retinal ischemia-reperfusion injury: Unveiling the impact on retinal ganglion cell apoptosis.

BACKGROUND: Retinal ischemia-reperfusion (I/R) serves as a significant contributor to ocular diseases, triggering a cascade of pathological processes. The interplay between neuroinflammation and the apoptosis of retinal ganglion cell (RGC) is a well-explored aspect of retinal I/R-induced tissue damage. Within this intricate landscape, the inflammatory cytokine Interleukin-21 (IL21) emerges as a potent mediator of neuroinflammation with known detrimental effects on neuronal integrity. However, its specific impact on RGC apoptosis in the context of retinal I/R has remains to be uncovered. This study aims to unravel the potential anti-apoptotic effects of IL21 siRNA on RGC, shedding light on the neuroprotection of retinal I/R.

METHODS: Sprague-Dawley (SD) rats underwent a controlled elevation of intraocular pressure (IOP) to 110 mmHg for 60 min to simulate retinal I/R conditions. To explore the influence of IL21 on RGC apoptosis and its underlying molecular mechanisms, a comprehensive array of techniques such immunohistochemistry, immunofluorescence, TUNEL, Hematoxylin-eosin (H&E), immunoblotting, and qRT-PCR were carried out.

RESULTS: The landscape of retinal I/R injury revealed an increase in the expression of IL21, reaching its peak at 72 h. Notably, IL21 markedly induced RGC apoptosis within the retinal I/R milieu. The introduction of IL21 siRNA showed promising outcomes, manifesting as an amelioration of neurological function deficits, a reduction in RGC loss, and an increase in the thickness of the inner retinal layer at the 72-hour reperfusion. Additionally, IL21 siRNA demonstrated its ability to hinder the release of proteins associated with apoptosis via the JAK/STAT signaling pathway. In the in vitro setting, IL21 siRNA efficiently reduced R28 cell apoptosis by suppressing the production of proteins associated with apoptosis by regulating the JAK/STAT signaling pathway.

CONCLUSIONS: This study provides evidence for the pathogenic role of IL21 in retinal I/R. The findings underscore IL21 siRNA as a promising therapeutic target for ischemic retinal injury. Its efficacy lies in its ability to mitigate RGC apoptosis by suppressing the JAK/STAT signaling pathway. These findings not only enhance our comprehension of retinal I/R pathology but also suggests IL21 siRNA as a potential transformative factor in the development of targeted therapies for ischemic retinal injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app