Add like
Add dislike
Add to saved papers

Reactive transport modelling of tailings hydrogeochemistry under a composite cover.

Quantitative forecasts of acid mine drainage (AMD) production are important for remediation planning. Reactive transport simulations corresponding to a detailed sampling location at a covered legacy tailings impoundment in northern Ontario, Canada, were conducted to quantitatively assess the predominant hydrogeochemical reactions. The simulations span the period from the end of tailings deposition (circa 1970) to early 2020, 12 years after remediation by a five-layer composite cover. The conceptual model of uncovered tailings weathering and subsequent geochemistry of the covered tailings system was implemented in 1D using the multi-component reactive transport code MIN3P. Transient monthly infiltration, post-cover boundary condition changes, and a dynamic temperature regime were incorporated. The shrinking core model, including parallel O2(aq) and Fe3+ oxidation reactions for the waste rock in the cover and the underlying tailings, was implemented to simulate the oxidation of As-bearing pyrite, chalcopyrite, and sphalerite. Primary carbonate and aluminosilicate host minerals promoted acid-neutralization reactions. Precipitation of secondary phases and sorption/desorption of Cu, Zn, and arsenite were incorporated into the model. The overall agreement between key simulated and field-measured post-cover aqueous geochemical parameters suggests that the conceptual model captured the primary hydrogeochemical processes in the covered tailings. A lack of reliable data on initial tailings mineralogy and pre-cover hydrogeochemistry increased simulation uncertainty. Simulated reaction rates indicate that where intact, the cover decreased sulfide oxidation rates by both O2(aq) and Fe3+ and improved pore-water quality over time. Simulation results indicate that elevated concentrations of Zn and As are likely to persist in the tailings regardless of cover performance, whereas concentrations of Cu and Al are the parameters most sensitive to cover effectiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app