Add like
Add dislike
Add to saved papers

Antipredator defences in motion: animals reduce predation risks by concealing or misleading motion signals.

Motion is a crucial part of the natural world, yet our understanding of how animals avoid predation whilst moving remains rather limited. Although several theories have been proposed for how antipredator defence may be facilitated during motion, there is often a lack of supporting empirical evidence, or conflicting findings. Furthermore, many studies have shown that motion often 'breaks' camouflage, as sudden movement can be detected even before an individual is recognised. Whilst some static camouflage strategies may conceal moving animals to a certain extent, more emphasis should be given to other modes of camouflage and related defences in the context of motion (e.g. flicker fusion camouflage, active motion camouflage, motion dazzle, and protean motion). Furthermore, when motion is involved, defence strategies are not necessarily limited to concealment. An animal can also rely on motion to mislead predators with regards to its trajectory, location, size, colour pattern, or even identity. In this review, we discuss the various underlying antipredator strategies and the mechanisms through which they may be linked to motion, conceptualising existing empirical and theoretical studies from two perspectives - concealing and misleading effects. We also highlight gaps in our understanding of these antipredator strategies, and suggest possible methodologies for experimental designs/test subjects (i.e. prey and/or predators) and future research directions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app