Add like
Add dislike
Add to saved papers

Quantitative Characterization of Ectopic Adrenal Gene Expression in Fetal Testes in 21-Hydroxylase Deficient Mice.

Testicular adrenal rest tumors (TART) are a frequent and fertility impairing long-term complication in males with classic congenital adrenal hyperplasia. Due to lack of clear experimental data on their origin, they are hypothesized to be derived from ectopic adrenocortical cells within testicular tissue mainly growing upon stimulation by chronically elevated levels of adrenocorticotropin (ACTH). Alternatively, a more totipotent embryological origin has been discussed as the potential source of these tumors. The aim of this study was to quantify alterations of ectopic expression of adrenocortical genes (CYP11B1, CYP11B2, CYP21, MC2R) and the Leydig cell specific marker (INSL3) in testicular tissue of fetal 21-hydroxylase deficient (21OHD) mice. Timed-pregnancy studies were performed using H-2aw18 (aw18)-mice. Testes and adrenals of E15.5 and E18.5 mouse fetuses were used for real-time PCR and immunohistochemistry. Gene expression levels were analyzed for genotype-dependent alterations and compared with immunohistochemistry. While enzymes of steroidogenesis showed a significant increased expression in adrenals of 21OHD mice at both E15.5 and E18.5 compared to wild-type (WT) mice, expression levels were unaltered in testes of 21OHD mice. When compared to WT adrenals a significant increase of INSL3 expression in adrenals of 21OHD mice at E15.5 and E18.5 was detected. Cells with adrenocortical properties in mice fetal testis differ from in situ adrenocortical cells in gene expression and growth at E15.5 and E18.5. These findings suggest that the different local regulation and different local niche in adrenals and testes influence growth of aberrant adrenal cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app