Add like
Add dislike
Add to saved papers

Differential impact of planktonic and periphytic diatoms on aggregation and sinking of microplastics in a simulated marine environment.

Aggregation between microalgae and microplastics (MPs) significantly influences the MPs distribution in marine environment. We investigated the effects of two diatoms, the planktonic Pseudo-nitzschia pungens and the periphytic Navicula sp., on the formation and sinking of aggregates when they were cultured with four different types of MPs: small and large polyethylene terephthalate (PET) fibers, and low-density and high-density polyethylene (PE) spheres. Navicula sp. formed aggregates with all MPs within one week, but P. pungens only formed aggregates with PE spheres after 9 weeks. The PE-Navicula sp. aggregates settled about 100 times faster than the PE-P. pungens aggregates (12.2 vs. 0.1 mm s-1 ), and this difference was most likely due to aggregate shape rather than size. Our findings indicate that the periphytic Navicula sp. had a greater effect on the settling of MPs than the planktonic P. pungens. These findings have implications for understanding the behavior of MPs in marine environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app