Add like
Add dislike
Add to saved papers

Injectable hydrogel electrodes as conduction highways to restore native pacing.

Nature Communications 2024 January 3
There is an urgent clinical need for a treatment regimen that addresses the underlying pathophysiology of ventricular arrhythmias, the leading cause of sudden cardiac death. The current report describes the design of an injectable hydrogel electrode and successful deployment in a pig model with access far more refined than any current pacing modalities allow. In addition to successful cardiac capture and pacing, analysis of surface ECG tracings and three-dimensional electroanatomic mapping revealed a QRS morphology comparable to native sinus rhythm, strongly suggesting the hydrogel electrode captures the deep septal bundle branches and Purkinje fibers. In an ablation model, electroanatomic mapping data demonstrated that the activation wavefront from the hydrogel reaches the mid-myocardium and endocardium much earlier than current single-point pacing modalities. Such uniform activation of broad swaths of tissue enables an opportunity to minimize the delayed myocardial conduction of heterogeneous tissue that underpins re-entry. Collectively, these studies demonstrate the feasibility of a new pacing modality that most closely resembles native conduction with the potential to eliminate lethal re-entrant arrhythmias and provide painless defibrillation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app