Add like
Add dislike
Add to saved papers

Heterogeneous correlate and potential diagnostic biomarker of tinnitus based on nonlinear dynamics of resting-state EEG recordings.

Tinnitus is a heterogeneous condition of hearing a rattling sound when there is no auditory stimulus. This rattling sound is associated with abnormal synchronous oscillations in auditory and non-auditory cortical areas. Since tinnitus is a highly heterogeneous condition with no objective detection criteria, it is necessary to search for indicators that can be compared between and within participants for diagnostic purposes. This study introduces heterogeneous though comparable indicators of tinnitus through investigation of spontaneous fluctuations in resting-state brain dynamics. The proposed approach uses nonlinear measures of chaos theory, to detect tinnitus and cross correlation patterns to reflect many of the previously reported neural correlates of tinnitus. These indicators may serve as effective measures of tinnitus risk even at early ages before any symptom is reported. The approach quantifies differences in oscillatory brain dynamics of tinnitus and normal subjects. It demonstrates that the left temporal areas of subjects with tinnitus exhibit larger lyapunov exponent indicating irregularity of brain dynamics in these regions. More complex dynamics is further recognized in tinnitus cases through entropy. We use this evidence to distinguish tinnitus patients from normal participants. Besides, we illustrate that certain anticorrelation patterns appear in these nonlinear measures across temporal and frontal areas in the brain perhaps corresponding to increased/decreased connectivity in certain brain networks and a shift in the balance of excitation and inhibition in tinnitus. Additionally, the main correlations are lost in tinnitus participants compared to control group suggesting involvement of distinct neural mechanisms in generation and persistence of tinnitus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app