Add like
Add dislike
Add to saved papers

Construction of durable antibacterial cellulose textiles through grafting dynamic disulfide-containing amino-compound and nanosilver deposition.

Cotton textile is very comfortable to wear, and also provides an ideal environment for bacterial propagation, easily causing harm to human health. In order to address this issue, various antibacterial techniques are employed for cotton finishing. However, some processes are complex and involve the use of environmentally unfriendly chemicals. In this work, a durable and efficient antibacterial cotton fabric was prepared via grafting of an amino-compound containing dynamic disulfide bonds, and then in-situ deposition of silver nanoparticles (AgNPs). Briefly, the reactive α-lipoic acid-modified polyethyleneimine (mPEI) was introduced to the cotton fibers via thiol-ene click reaction. Subsequently, the amino groups and dynamically-generated sulfhydryl groups in the mPEI molecules were used to initiate the ultrafast reduction of silver ions without the participation of additional reductant, constructing a stable antibacterial layer on fiber surface. The results reveal that the amino and thiol groups of mPEI could form coordination bonds with the deposited silver nanoparticles, and the antibacterial ability of AgNP@cotton-g-mPEI fabric remains at a high level even after 20 washing cycles. After 30 min of contact with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), the antibacterial rates against both bacteria reached 99.99 %. Meanwhile, the network matrix constructed by the recombination of the dynamic disulfide bonds in mPEI endows the cotton fabric with detectable wrinkle resistance and encouraging anti-ultraviolet effect. The present work provides a novel alternative for preparation of durable and efficient antibacterial textiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app