Add like
Add dislike
Add to saved papers

Characterization of polyphosphate dynamics in the widespread freshwater diatom Achnanthidium minutissimum under varying phosphorus supplies.

Journal of Phycology 2024 January 2
Polyphosphates (polyP) are ubiquitous biomolecules that play a multitude of physiological roles in many cells. We have studied the presence and role of polyP in a unicellular alga, the freshwater diatom Achnanthidium minutissimum. This diatom stores up to 2.0 pg·cell-1 of polyP, with chain lengths ranging from 130 to 500 inorganic phosphate units (Pi ). We applied energy dispersive X-ray spectroscopy, Raman/fluorescence microscopy, and biochemical assays to localize and characterize the intracellular polyP granules that were present in large apical vacuoles. We investigated the fate of polyP in axenic A. minutissimum cells grown under phosphorus (P), replete (P(+) ), or P deplete (P(-) ) cultivation conditions and observed that in the absence of exogenous P, A. minutissimum rapidly utilizes their internal polyP reserves, maintaining their intrinsic growth rates for up to 8 days. PolyP-depleted A. minutissimum cells rapidly took up exogenous P a few hours after Pi resupply and generated polyP three times faster than cells that were not initially subjected to P limitation. Accordingly, we propose that A. minutissimum deploys a succession of acclimation strategies regarding polyP dynamics where the production or consumption of polyP plays a central role in the homeostasis of the diatom.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app