Add like
Add dislike
Add to saved papers

Dried blood drops on vertical surfaces.

The analysis of structures in dried droplets has made it possible to detect the presence and conformational state of macromolecules in relevant biofluids. Therefore, the implementation of novel drying strategies for pattern formation could facilitate the identification of biomarkers for the diagnosis of pathologies. We present an experimental study of patterns formed by evaporating water-diluted blood droplets on a vertical surface. Three significant morphological features were observed in vertical droplet deposits: (1) The highest concentration of non-volatile molecules is consistently deposited in the lower part of the droplet, regardless of erythrocyte concentration. (2) The central region of deposits decreases rapidly with hematocrit; (3) At high erythrocyte concentrations (36-40% HCT), a broad coating of blood serum is produced in the upper part of the deposit. These findings are supported by the radial intensity profile, the relative thickness of the crown, the aspect ratio of the deformation, the relative area of the central region, and the Entropy of the Gray Level Co-occurrence Matrix Entropy (GLCM). Moreover, we explore the pattern formation during the drying of vertical blood drops. We found that hematocrit concentration has a significant impact on droplet drying dynamics. Finally, we conducted a proof-of-concept test to investigate the impact of vertical droplet evaporation on blood droplets with varying lipid concentrations. The results revealed that it is possible to differentiate between deposits with normal, slightly elevated, and moderately elevated lipid levels using only the naked eye.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app