Add like
Add dislike
Add to saved papers

Interface engineering of heterogeneous NiMn layered double hydroxide/vertical aligned NiCo 2 S 4 nanosheet as highly efficient hybrid electrocatalyst for overall seawater splitting.

Chemosphere 2023 December 26
We report the fabrication of a heterogeneous catalyst through vertically aligned NiCo2 S4 /Ni3 S2 nanosheet with encapsulation of ultrathin NiMn layered double hydroxide over self-standing nickel foam (NM/NCS/NS/NF) via two-step hydrothermal processes. Benefiting from more adequate catalytic active centres and copious interfacial charge transfer channels, NM/NCS/NS/NF electrode demonstrates superior bifunctional activity for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes under alkaline fresh/simulated seawater electrolyte conditions. As a result, NM/NCS/NS/NF electrode requires the smallest overpotentials of 282 & 312 mV (OER) and 171 & 204 mV (HER) to attain current densities of 30 & 50 mA cm-2 respectively under alkaline simulated seawater electrolyte conditions. As a result, the presence of amorphous NiMn LDH layers over crystalline NiCo2 S4 /Ni3 S2 catalyst stimulates surface adsorption of oxygen intermediate species, water dissociate ability on catalytic active centres, and mass transport with electron transfer at the interface. Further, the two-electrode configuration assisted electrolyser system delivers an efficient overall water splitting activity with minimum cell voltages of 1.54 V (in 1 M KOH) and 1.56 V (in 1 M KOH+0.5 M NaCl) at a current density of 10 mA cm-2 . Besides, a fabricated electrolyser cell provides a more sustained water electrolysis process and robust durability for 20 h which displays NM/NCS/NS/NF electrode is a vibrant and potential candidate for realistic seawater electrolysis. Therefore, our proposed heterogeneous electrocatalyst could open up a new platform for developing efficient large-scale efficient seawater electrolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app