Add like
Add dislike
Add to saved papers

Deletion of RAMP1 Signaling Enhances Diet-induced Obesity and Fat Absorption via Intestinal Lacteals in Mice.

In Vivo 2024
BACKGROUND/AIM: Intestinal lymphatic vessels (lacteals) play a critical role in the absorption and transport of dietary lipids into the circulation. Calcitonin gene-related peptide and receptor activity-modifying protein 1 (RAMP1) are involved in lymphatic vessel growth. This study aimed to examine the role of RAMP1 signaling in lacteal morphology and function in response to a high-fat diet (HFD).

MATERIALS AND METHODS: RAMP1 deficient (RAMP1-/- ) or wild-type (WT) mice were fed a normal diet (ND) or HFD for 8 weeks.

RESULTS: RAMP1-/- mice fed a HFD had increased body weights compared to WT mice fed a HFD, which was associated with high levels of total cholesterol, triglycerides, and glucose. HFD-fed RAMP1-/- mice had shorter and wider lacteals than HFD-fed WT mice. HFD-fed RAMP1-/- mice had lower levels of lymphatic endothelial cell gene markers including vascular endothelial growth factor receptor 3 (VEGFR3) and lymphatic vascular growth factor VEGF-C than HFD-fed WT mice. The concentration of an absorbed lipid tracer in HFD-fed RAMP1-/- mice was higher than that in HFD-fed WT mice. The zipper-like continuous junctions were predominant in HFD-fed WT mice, while the button-like discontinuous junctions were predominant in HFD-fed RAMP1-/- mice.

CONCLUSION: Deletion of RAMP1 signaling suppressed lacteal growth and VEGF-C/VEGFR3 expression but accelerated the uptake and transport of dietary fats through discontinuous junctions of lacteals, leading to excessive obesity. Specific activation of RAMP1 signaling may represent a target for the therapeutic management of diet-induced obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app