Add like
Add dislike
Add to saved papers

Novel cytochrome P450s for various hydroxylation of steroids from filamentous fungi.

Bioresource Technology 2023 December 24
Hydroxylated steroids are value-added products with diverse biological activities mediated by cytochrome P450 enzymes, however, few has been thoroughly characterized in fungi. This study introduces a rapid identification strategy for filamentous fungi P450 enzymes through transcriptome and bioinformatics analysis. Five novel enzymes (CYP68J5, CYP68L10, CYP68J3, CYP68N1 and CYP68N3) were identified and characterized in Saccharomyces cerevisiae or Aspergillus oryzae. Molecular docking and dynamics simulations were employed to elucidate hydroxylation preferences of CYP68J5 (11α, 7α bihydroxylase) and CYP68N1 (11α hydroxylase). Additionally, redox partners (cytochrome P450 reductase and cytochrome b5) and ABC transporter were co-expressed with CYP68N1 to enhance 11α-OH-androstenedione (11α-OH-4AD) production. The engineered cell factory, co-expressing CPR1 and CYP68N1, achieved a significant increase of 11α-OH-4AD production, reaching 0.845 g·L-1 , which increased by 14 times compared to the original strain. This study provides a comprehensive approach for identifying and implementing novel cytochrome P450 enzymes, paving the way for sustainable production of steroidal products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app