Add like
Add dislike
Add to saved papers

In Silico Screening and Molecular Dynamics Simulation of Potential Anti-Malarial Agents from Zingiberaceae as Potential Plasmodium falciparum Lactate Dehydrogenase (PfLDH) Enzyme Inhibitors.

Malaria continues to be a major public health issue in a number of countries, particularly in tropical regions-the emergence of drug-resistant Plasmodium falciparum encourages new drug discovery research. The key to Plasmodium falciparum survival is energy production up to 100 times greater than other parasites, primarily via the PfLDH. This study targets PfLDH with natural bioactive compounds from the Zingiberaceae family through molecular docking and molecular dynamic studies. Sulcanal, quercetin, shogosulfonic acid C, galanal A and naringenin are the Top 5 compounds with a lower binding energy value than chloroquine, which was used as a control in this study. By binding to NADH and substrate binding site residues, the majority of them are expected to inhibit pyruvate conversion to lactate and NAD+ regeneration. When compared to sulcanal and control drugs, the molecular dynamics (MD) simulation study indicated that quercetin may be the most stable molecule when interacting with PfLDH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app