Add like
Add dislike
Add to saved papers

Improved quantitative determination of (R)- and (S)-rabeprazole sodium and its metabolites in rat plasma by LC-MS/MS and its application to a toxicokinetic study.

There exist two enantiomers: (R)- and (S)-rabeprazole. (R)-rabeprazole offers specific pharmacokinetic advantages and enhanced therapeutic efficacy, warranting further investigation and development. Here, we developed a simple and rapid chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to simultaneously quantify rabeprazole enantiomers and their metabolites (rabeprazole sulfoxide and desmethyl rabeprazole enantiomers) and a LC-MS to quantify rabeprazole thioether. As for the chiral LC-MS/MS method, Chiral-AGP column (150 × 4 mm, 5 μm) was used and its mobile phase was acetonitrile (mobile phase A) and 10 mmol/L ammonium acetate (mobile phase B) (linear gradient profile: 0 min, 10 % B; 5 min, 15 % B; 9 min, 15 % B; 9.01 min, 10 % B; 13 min, 10 % B). The multiple reactions monitoring transitions of m/z 360.3 → 242.1, 376.2 → 240.1, 346.2 → 228.2 and 368.2 → 190.2 were opted for quantifying rabeprazole enantiomers, rabeprazole sulfoxide, desmethyl rabeprazole enantiomers and internal standard omeprazole. The analyte samples were prepared by a simple liquid-liquid extraction method. As for the LC-MS method, analytes were separated on a Inertsil® ODS-3 column (4.6 × 150 mm, 5 μm). The mobile phase was acetonitrile-5 mmol/L ammonium acetate water solution (65:35, v/v). ESI+ was used and ion peaks with m/z 344.2 (rabeprazole thioether) and 285.1 (internal standard diazepam) were monitored. Both these 2 methods were validated for specificity, linearity, precision, accuracy, matrix effect and extraction recovery, and, particularly, the stability of analytes under various conditions. We successfully applied these methods to a 13-week toxicokinetic study of rabeprazole in rats after intravenous administration of (R)- (80, 20, 5 mg/kg/d) and racemic (80 mg/kg/d) rabeprazole sodium. The results showed that rabeprazole and its metabolites did not accumulate in rats. However, desmethyl rabeprazole and rabeprazole thioether showed higher exposure and lower clearance rate in the last administration than in the first one. (R)-rabeprazole showed a higher exposure and a slower elimination rate than (S)-rabeprazole in rats. These findings offer experimental evidence and a theoretical foundation for further preclinical investigations and clinical applications of (R)-rabeprazole.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app