Add like
Add dislike
Add to saved papers

Assessment of Quercetin Antiemetic Properties: In Vivo and In Silico Investigations on Receptor Binding Affinity and Synergistic Effects.

Quercetin (QUA), a flavonoid compound, is ubiquitously found in plants and has demonstrated a diverse range of biological activities. The primary objective of the current study is to assess the potential antiemetic properties of QUA using an in vivo and in silico approach. In this experiment, 4-day-old chicks were purchased to induce emesis by orally administering copper sulfate pentahydrate (CuSO4 ·5H2 O) at a dose of 50 mg/kg (orally). Domperidone (DOM) (6 mg/kg), Hyoscine (HYS) (21 mg/kg), and Ondansetron (OND) (5 mg/kg) were treated as positive controls (PCs), and distilled water and a trace amount of Tween 80 mixture was employed as a negative control (NC). QUA was given orally at two distinct doses (25 and 50 mg/kg). Additionally, QUA (50 mg/kg) and PCs were administered separately or in combination to assess their antagonistic or synergistic effects on the chicks. The binding affinity of QUA and referral ligands towards the serotonin receptor (5HT3), dopamine receptors (D2 and D3), and muscarinic acetylcholine receptors (M1-M5) were estimated, and ligand-receptor interactions were visualized through various computational tools. In vivo findings indicate that QUA (25 and 50 mg/kg) has a significant effect on reducing the number of retches (16.50 ± 4.65 and 10.00 ± 4.19 times) and increasing the chick latency period (59.25 ± 4.75 and 94.25 ± 4.01 s), respectively. Additionally, QUA (50 mg/kg) in combination with Domperidone and Ondansetron exhibited superior antiemetic effects, reducing the number of retches and increasing the onset of emesis-inducing time. Furthermore, it is worth noting that QUA exhibited the strongest binding affinity against the D2 receptor with a value of -9.7 kcal/mol through the formation of hydrogen and hydrophobic bonds. In summary, the study found that QUA exhibited antiemetic activity in chicks, potentially by interacting with the D2 receptor pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app