Add like
Add dislike
Add to saved papers

Characterization of Bacillus velezensis 32a metabolites and their synergistic bioactivity against crown gall disease.

Microbiological Research 2023 December 11
Crown gall disease caused by Agrobacterium tumefaciens is considered to be the main bacterial threat of stone fruit plants in Mediterranean countries. In a previous study, Bacillus velezensis strain 32a was isolated from Tunisian rhizosphere soil and revealed high antagonistic potential against A. tumefaciens strains. In order to better characterize the antagonistic activity of this strain against this important plant pathogen, the production of secondary metabolites was analyzed using liquid chromatography coupled with mass spectrometry. The results revealed the production of different compounds identified as surfactins, fengycins, iturins and bacillibactin belonging to the lipopeptide group, three polyketides (macrolactins, oxydifficidin and bacillaenes), bacilysin and its chlorinated derivative; chlorotetaine. The involvement of lipopeptides in this antagonistic activity was ruled out by performing agar and broth dilution tests with pure molecules. Thus, the construction of B. velezensis 32a mutants defective in polyketides and bacilysin biosynthesis and their antagonistic activity was performed and compared to a set of derivative mutants of a comparable strain, B. velezensis GA1. The defective difficidin mutants (△dfnA and △dfnD) were unable to inhibit the growth of A. tumefaciens, indicating the high-level contribution of difficidin in the antagonism process. While the macrolactin deficient mutant (∆mlnA) slightly decreased the activity, suggesting a synergetic effect with difficidin. Remarkably, the mutant △dhbC only deficient in bacillibactin production showed significant reduction in its capacity to inhibit the growth of Agrobacterium.Taken collectively, our results showed the strong synergetic effect of difficidin and macrolactins and the significant implication of siderophore to manage crown gall disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app