Add like
Add dislike
Add to saved papers

Effect of Sinotubular Junction Size on TAVR Leaflet Thrombosis: A Fluid-Structure Interaction Analysis.

TAVR has emerged as a standard approach for treating severe aortic stenosis patients. However, it is associated with several clinical complications, including subclinical leaflet thrombosis characterized by Hypoattenuated Leaflet Thickening (HALT). A rigorous analysis of TAVR device thrombogenicity considering anatomical variations is essential for estimating this risk. Clinicians use the Sinotubular Junction (STJ) diameter for TAVR sizing, but there is a paucity of research on its influence on TAVR devices thrombogenicity. A Medtronic Evolut® TAVR device was deployed in three patient models with varying STJ diameters (26, 30, and 34 mm) to evaluate its impact on post-deployment hemodynamics and thrombogenicity, employing a novel computational framework combining prosthesis deployment and fluid-structure interaction analysis. The 30 mm STJ patient case exhibited the best hemodynamic performance: 5.94 mmHg mean transvalvular pressure gradient (TPG), 2.64 cm2 mean geometric orifice area (GOA), and the lowest mean residence time (TR )-indicating a reduced thrombogenic risk; 26 mm STJ exhibited a 10 % reduction in GOA and a 35% increase in mean TPG compared to the 30 mm STJ; 34 mm STJ depicted hemodynamics comparable to the 30 mm STJ, but with a 6% increase in TR and elevated platelet stress accumulation. A smaller STJ size impairs adequate expansion of the TAVR stent, which may lead to suboptimal hemodynamic performance. Conversely, a larger STJ size marginally enhances the hemodynamic performance but increases the risk of TAVR leaflet thrombosis. Such analysis can aid pre-procedural planning and minimize the risk of TAVR leaflet thrombosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app