Add like
Add dislike
Add to saved papers

Nanoplasmonic biosensors for multicolor visual analysis of acetylcholinesterase activity and drug inhibitor screening in point-of-care testing.

The monitoring of acetylcholinesterase (AChE) activity and the screening of its inhibitors are significance of the diagnosis and drug therapy of nervous diseases. A metal ions-mediated signal amplification strategy was developed for the highly sensitive and multicolor assay of AChE activity and visually screening its drug inhibitors. After the specific reaction between AChE and acetylthiocholine (ATCh), the hydrolysis product thiocholine (TCh) can directly and decompose the α-FeOOH nanorods (NRs) to release amounts of Fe2+ , which was regarded as Fenton reagent to efficiently catalyze H2 O2 to produce ·OH. Then, the as-formed ·OH can further largely shorten the gold nanobipyramids (Au NBPs), generating a series of palpable color variations. The linear range for AChE activity was 0.01-500.0 U/L with the limit of detection as low as 0.0074 U/L. The vivid visual effects could be easily distinguished for the multicolor assay of AChE activity by naked eye in visible light. To achieve the point-of-care testing, Au NBPs were further assembled on polymeric electrospun nanofibrous films (ENFs) surface as test strips for the easy-to-use test of AChE activity by RGB values with a smartphone. Fascinatingly, this proposed strategy can be used for the visual screening AChE inhibitors or non-inhibitors. Comparing with the clinical drugs (rivastigmine tartrate, and donepezil), some natural alkaloids such as evodiamine, caffeine, camptothecin, and berberine hydrochloride were selected as inhibitor modes to confirm the drug screening capability of this method. This proposed strategy may have great potential in the other disease-related enzymatic biomarkers assay and the rapid screening of drug therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app