Add like
Add dislike
Add to saved papers

Difficult-to-express antigen generation through a co-expression and disassociation methodology.

Biotechnology Progress 2023 December 14
Extracellular domain (ECD) antigens are crucial components for antibody discovery, in vitro assays, and epitope mapping during therapeutical antibody development. Oftentimes, those antigens are difficult to produce while retaining the biologic function/activity upon extracellular secretion in commonly used expression systems. We have developed an effective method to cope with the challenge of generating quality antigen ECDs. In this method, a monoclonal antibody (Mab) or antibody fragment antigen-binding (Fab) region acts as a "chaperone" to stabilize the antigen ECD through forming an antibody:antigen complex. This methodology includes transient co-expression of the complex in Chinese hamster ovary cells and then dissociation of the purified complex into individual components by low pH treatment in the presence of arginine. The antigen is then separated from the chaperone on a preparative size exclusion chromatography (pSEC) followed by an optional affinity chromatography process to remove residual Mab or Fab. We demonstrate this co-expression/disassociation methodology on two difficult-to-express antigen ECDs from cluster-of-differentiation/cytokine family and were successful in producing stable, biologically active antigens when the common methods using Histidine-tagged and/or Fc-fused protein failed. This can be applied as a general approach for antigen production if a Mab or binding partner is available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app