Add like
Add dislike
Add to saved papers

Supplementing clinical lactation studies with PBPK modeling to inform drug therapy in lactating mothers: Prediction of primaquine exposure as a case example.

Evaluating the safety of primaquine (PQ) during breastfeeding requires an understanding of its pharmacokinetics (PKs) in breast milk and its exposure in the breastfed infant. Physiologically-based PK (PBPK) modeling is primed to assess the complex interplay of factors affecting the exposure of PQ in both the mother and the nursing infant. A published PBPK model for PQ describing the metabolism by monoamine oxidase A (MAO-A; 90% contribution) and cytochrome P450 2D6 (CYP2D6; 10%) in adults was applied to predict the exposure of PQ in mothers and their breastfeeding infants. Plasma exposures following oral daily dosing of 0.5 mg/kg in the nursing mothers in a clinical lactation study were accurately captured, including the observed ranges. Reported infant daily doses based on milk data from the clinical study were used to predict the exposure of PQ in breastfeeding infants greater than or equal to 28 days. On average, the predicted exposures were less than or equal to 0.13% of the mothers. Furthermore, in simulations involving neonates less than 28 days, PQ exposures remain less than 0.16% of the mothers. Assuming that MAO-A increases slowly with age, the predicted relative exposure of PQ remains low in neonates (<0.46%). Thus, the findings of our study support the recommendation made by the authors who reported the results of the clinical lactation study, that is, that when put into context of safety data currently available in children, PQ should not be withheld in lactating women as it is unlikely to cause adverse events in breastfeeding infants greater than or equal to 28 days old.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app