Add like
Add dislike
Add to saved papers

Enhancing the Biopharmacological Characteristics of Asperosaponin VI: Unveiling Dynamic Self-Assembly Phase Transitions in the Gastrointestinal Environment.

PURPOSE: Asperosaponin VI (ASP VI) as an active ingredient of Dipsacus asperoides , which has a wide range of biological and pharmacological activity. However, its development and application are restricted due to the poor gastrointestinal permeability and oral bioavailability. This investigation aims to reveal the influence of the self-assembled structure by the interaction between ASP VI and endogenous components NaTC and/or DOPC in the gastrointestinal environment on its biopharmaceutical properties, and novelty elucidated the molecular mechanism for the formation of self-assembled nanomicelles.

METHODS: This change in phase state in gastrointestinal fluids is characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). UPLC-Q-TOF-MS was used to analyze the composition of phase components and the exposure of nanomicelles in vivo. Molecular dynamics simulation (MDS) was applied to preliminarily elucidate the self-assembly mechanism of ASP VI in the gastrointestinal environment. Furthermore, theS8 promoting absorption mechanism of nanomicelles were investigated through in vivo pharmacokinetic experiments, parallel artificial membrane permeability assay (PAMPA), quadruple single-pass intestinal perfusion in rats, and Caco-2 cell monolayer model.

RESULTS: We demonstrated that the ASP VI could spontaneously form dynamic self-assembled structures with sodium taurocholate (NaTC) and dipalmitoyl phosphatidylcholine (DOPC) during gastrointestinal solubilization, which promoted the gastrointestinal absorption and permeability of ASP VI and increased its exposure in vivo, thus improving the biopharmacological characteristics of ASP VI. Moreover, ASP VI-NaTC-DOPC-self-assembled nanostructures (ASP VI-NaTC-DOPC-SAN) manifested higher cellular uptake in Caco-2 cells as evidenced by flow cytometry and confocal microscopy, and this study also preliminarily revealed the mechanism of self-assembly formation of ASP VI with endogenous components NaTC and DOPC driven by electrostatic and hydrogen bonding interactions.

CONCLUSION: This study provides evidence that the dynamic self-assembled phase transition may play a key role in improving the biopharmacological characteristics of insoluble or low permeability active ingredients during the gastrointestinal dissolution of Chinese medicines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app