Add like
Add dislike
Add to saved papers

Reducing sugar intake through chronic swimming training: Exploring palatability changes and central vasopressin mechanisms.

Excessive sugar intake has been associated with the onset of several non-communicable chronic diseases seen in humans. Physical activity could affect sweet taste perception which may affect sugar intake. Therefore, it was investigated the chronic effects of swimming training on sucrose intake/preference, reactivity to sucrose taste, self-care in neurobehavioral stress, and the possible involvement of the vasopressin type V1 receptor in sucrose solution intake. Male Wistar rats, of from different cohorts were used, subjected to a sedentary lifestyle (SED) or swimming training (TR - 1 h/day, 5×/week, for 8 weeks, with no added load). Weekly intake was verified in SED and TR rats after access to a sucrose solution 1×/week, 2 h/day, for eight weeks. Chronic effects of swimming and/or a sedentary lifestyle were carried out three days after the end of the physical exercise protocol. Swimming training reduced the intake of sucrose solution from the third week onwards in the two-bottle test measured once a week for 8 weeks. After the ending of the swimming protocol, sucrose intake was also reduced as per its preference. This reduced intake is probably correlated with the carbohydrate aspect of sucrose since saccharin intake was not affected. In addition, chronic swimming training was shown to reduce ingestive responses, increase neutral responses, without interfering with aversive, in the sucrose solution taste reactivity test. In addition, these results are not related to a depressive-like behavior, nor to neurobehavioral stress. Furthermore, treatment with vasopressin V1 receptor antagonist abolished the reduced sucrose intake in trained rats. The results suggest that swimming performed chronically is capable of reducing intake and preference for sucrose by decreasing the palatability of sucrose without causing depressive-type behavior or stress. In addition, the results also suggest that central V1 vasopressin receptors are part of the mechanisms activated to reduce sucrose intake in trained rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app